Combining machine learning and matching techniques to improve causal inference in program evaluation.

نویسندگان

  • Ariel Linden
  • Paul R Yarnold
چکیده

RATIONALE, AIMS AND OBJECTIVES Program evaluations often utilize various matching approaches to emulate the randomization process for group assignment in experimental studies. Typically, the matching strategy is implemented, and then covariate balance is assessed before estimating treatment effects. This paper introduces a novel analytic framework utilizing a machine learning algorithm called optimal discriminant analysis (ODA) for assessing covariate balance and estimating treatment effects, once the matching strategy has been implemented. This framework holds several key advantages over the conventional approach: application to any variable metric and number of groups; insensitivity to skewed data or outliers; and use of accuracy measures applicable to all prognostic analyses. Moreover, ODA accepts analytic weights, thereby extending the methodology to any study design where weights are used for covariate adjustment or more precise (differential) outcome measurement. METHOD One-to-one matching on the propensity score was used as the matching strategy. Covariate balance was assessed using standardized difference in means (conventional approach) and measures of classification accuracy (ODA). Treatment effects were estimated using ordinary least squares regression and ODA. RESULTS Using empirical data, ODA produced results highly consistent with those obtained via the conventional methodology for assessing covariate balance and estimating treatment effects. CONCLUSIONS When ODA is combined with matching techniques within a treatment effects framework, the results are consistent with conventional approaches. However, given that it provides additional dimensions and robustness to the analysis versus what can currently be achieved using conventional approaches, ODA offers an appealing alternative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

How big data changes statistical machine learning

This presentation illustrates how big data forces change on algorithmic techniques and the goals of machine learning, bringing along challenges and opportunities. 1. The theoretical foundations of statistical machine learning traditionally assume that training data is scarce. If one assumes instead that data is abundant and that the bottleneck is the computation time, stochastic algorithms with...

متن کامل

Mutual Information Based Matching for Causal Inference with Observational Data

This paper presents an information theory-driven matching methodology for making causal inference from observational data. The paper adopts a “potential outcomes framework” view on evaluating the strength of cause-effect relationships: the population-wide average effects of binary treatments are estimated by comparing two groups of units – the treated and untreated (control). To reduce the bias...

متن کامل

cem: Software for Coarsened Exact Matching

This program is designed to improve causal inference via a method of matching that is widely applicable in observational data and easy to understand and use (if you understand how to draw a histogram, you will understand this method). The program implements the coarsened exact matching (CEM) algorithm, described below. CEM may be used alone or in combination with any existing matching method. T...

متن کامل

Implementation of Traditional (S-R)-Based PM Method with Bayesian Inference

In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of evaluation in clinical practice

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2016